您好,欢迎您来到海南琼海!

一元二次方程解法

移动版    时间:2019-06-01 16:12

概括:这道题是干懒胖同学的课后数学练习题,主要是关于一元二次方程解法,指导老师为胡老师,下面是详细讲解。

题目:一元二次方程解法

解:

1.配方法

  (可解全部一元二次方程)

  如:解方程:x^2+2x-3=0

把常数项移项得:x^2+2x=3

  等式两边同时加1(构成完全平方式)得:x^2+2x+1=4

  因式分解得:(x+1)^2=4

  解得:x1=-3,x2=1

  用配方法解一元二次方程小口诀

  二次系数化为一

  常数要往右边移

  一次系数一半方

  两边加上最相当

2.公式法

  (可解全部一元二次方程)

  首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根

  1.当Δ=b^2-4ac0时 x有两个不相同的实数根

  当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a

  来求得方程的根

3.因式分解法

  (可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.

  如:解方程:x^2+2x+1=0

利用完全平方公式因式分解得:(x+1﹚^2=0

  解得:x1=x2=-1

4.直接开平方法

  (可解部分一元二次方程)

5.代数法

  (可解全部一元二次方程)

  ax^2+bx+c=0

  同时除以a,可变为x^2+bx/a+c/a=0

  设:x=y-b/2

  方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0

  再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0

  y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]

祝你学习更上一层楼,数学独立团为您解决疑问!

参考思路:

直接开方法:x^2=4 x=±2

配方法:x^2+2x+1=0 (x+1)^2=0 x+1=0 x=-1

因式分解法:(x-2)^2-2x+4=0 (x-2)^2-2(x-2)=0 (x-2)(x-2-2)=0 x=2 或x=4

公式法:在ax^2+bx+c=0中,x=[-b±根号下(b^2-4ac)]/2a

举一反三

例1: 关于一元二次方程的解法.请大家列举各种关于一元二次方程的解法,夜深了,怕无人答所以没上分,如果有说的好的一定追分![数学练习题]


思路提示:

一元二次方程的解法

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基 础.

一元二次方程的一般形式为:ax^2(2为次数,即X的平方)+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2 的整式方程.

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:

1、直接开平方法;2、配方法;3、公式法;4、因式分解法.

二、方法、例题精讲:

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=±根号下n+m .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解.

(1)(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2) 9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解为x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2

方程左边成为一个完全平方式:(x+ )2=

当b^2-4ac≥0时,x+ =±

∴x=(这就是求根公式)

例2.用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方)

将常数项移到方程右边 3x^2-4x=2

将二次项系数化为1:x2-x=

方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2

配方:(x-)2=

直接开平方得:x-=±

∴x=

∴原方程的解为x1=,x2= .

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) , (b^2-4ac≥0)就可得到方程的根.

例3.用公式法解方程 2x2-8x=-5

将方程化为一般形式:2x2-8x+5=0

∴a=2, b=-8, c=5

b^2-4ac=(-8)2-4×2×5=64-40=24>0

∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)

∴原方程的解为x1=,x2= .

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

(1)(x+3)(x-6)=-8 化简整理得

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解.

(2)2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解.

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.

(3)6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解.

(4)x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解.

小结:

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.

直接开平方法是最基本的方法.

公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解.

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好.(三种重要的数学方法:换元法,配方法,待定系数法).

例5.用适当的方法解下列方程.(选学)

(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0

(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0

分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算.观察后发现,方程左边可用平方差公式分解因式,化成两个一次因式的乘积.

(2)可用十字相乘法将方程左边因式分解.

(3)化成一般形式后利用公式法解.

(4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解.

(1)4(x+2)2-9(x-3)2=0

[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0

(5x-5)(-x+13)=0

5x-5=0或-x+13=0

∴x1=1,x2=13

(2) x2+(2- )x+ -3=0

[x-(-3)](x-1)=0

x-(-3)=0或x-1=0

∴x1=-3,x2=1

(3)x2-2 x=-

x2-2 x+ =0 (先化成一般形式)

△=(-2 )2-4 ×=12-8=4>0

∴x=

∴x1=,x2=

(4)4x2-4mx-10x+m2+5m+6=0

4x2-2(2m+5)x+(m+2)(m+3)=0

[2x-(m+2)][2x-(m+3)]=0

2x-(m+2)=0或2x-(m+3)=0

∴x1= ,x2=

例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根. (选学)

分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)

[3(x+1)+2(x-4)][(x+1)+(x-4)]=0

即 (5x-5)(2x-3)=0

∴5(x-1)(2x-3)=0

(x-1)(2x-3)=0

∴x-1=0或2x-3=0

∴x1=1,x2=是原方程的解.

例7.用配方法解关于x的一元二次方程x2+px+q=0

x2+px+q=0可变形为

x2+px=-q (常数项移到方程右边)

x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)

(x+)2= (配方)

当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)

∴x=- ±=

∴x1= ,x2=

当p2-4q

例2: 一元二次方程解法[数学练习题]


思路提示:

一般解法

1.配方法

  (可解全部一元二次方程)

  如:解方程:x^2+2x-3=0

把常数项移项得:x^2+2x=3

  等式两边同时加1(构成完全平方式)得:x^2+2x+1=4

  因式分解得:(x+1)^2=4

  解得:x1=-3,x2=1

  用配方法解一元二次方程小口诀

  二次系数化为一

  常数要往右边移

  一次系数一半方

  两边加上最相当

2.公式法

  (可解全部一元二次方程)

  首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根

  1.当Δ=b^2-4ac0时 x有两个不相同的实数根

  当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a

  来求得方程的根

3.因式分解法

  (可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.

  如:解方程:x^2+2x+1=0

利用完全平方公式因式分解得:(x+1﹚^2=0

  解得:x1=x2=-1

4.直接开平方法

  (可解部分一元二次方程)

5.代数法

  (可解全部一元二次方程)

  ax^2+bx+c=0

  同时除以a,可变为x^2+bx/a+c/a=0

  设:x=y-b/2

  方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0

  再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0

  y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]

例3: 有没有人给点详细的一元二次方程的解法,清楚一点,再给几道简单的题,请勿照抄百度百科和别人的回答[数学练习题]


思路提示:

百度已经讲的很详细了

1..配方法(可解部分一元二次方程)

2.公式法(可解部分一元二次方程)

3.因式分解法(可解部分一元二次方程)

4.开方法(可解全部一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基

础,应引起同学们的重视.

一元二次方程的一般形式为:ax^2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2

的整式方程.

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解

法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法.

二、方法、例题精讲:

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的

方程,其解为x=m±√n

例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以

此方程也可用直接开平方法解.

(1)(3x+1)^2=7

∴(3x+1)^2=7

∴3x+1=±√7(注意不要丢解)

∴x= ...

∴原方程的解为x1=...,x2= ...

(2) 9x^2-24x+16=11

∴(3x-4)^2=11

∴3x-4=±√11

∴x= ...

∴原方程的解为x1=...,x2= ...

2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)

先将固定数c移到方程右边:ax^2+bx=-c

将二次项系数化为1:x^2+x=-

方程两边分别加上一次项系数的一半的平方:x^2+x+( )2=- +( )2

方程左边成为一个完全平方式:(x+ )2=

当b2-4ac≥0时,x+ =±

∴x=...(这就是求根公式)

例2.用配方法解方程 3x^2-4x-2=0

将常数项移到方程右边 3x^2-4x=2

将二次项系数化为1:x^2-x=

方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2

配方:(x-)^2=

直接开平方得:x-=±

∴x=

∴原方程的解为x1=,x2= .

3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根.

当b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)

当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)

当b^2-4ac0

∴x= = =

∴原方程的解为x1=,x2= .

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让

两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个

根.这种解一元二次方程的方法叫做因式分解法.

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x^2+3x=0

(3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学)

(1)(x+3)(x-6)=-8 化简整理得

x^2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解.

(2)2x^2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解.

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.

(3)6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解.

(4)x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解.

小结:

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般

形式,同时应使二次项系数化为正数.

直接开平方法是最基本的方法.

公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式

法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程

是否有解.

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方

法之一,一定要掌握好.(三种重要的数学方法:换元法,配方法,待定系数法).

例5.用适当的方法解下列方程.(选学)

(1)4(x+2)^2-9(x-3)^2=0 (2)x^2+2x-3=0

(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0

分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算.观察后发现,方程左边可用平方差

公式分解因式,化成两个一次因式的乘积.

(2)可用十字相乘法将方程左边因式分解.

(3)化成一般形式后利用公式法解.

(4)把方程变形为 4x^2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解.

(1)4(x+2)^2-9(x-3)^2=0

[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0

(5x-5)(-x+13)=0

5x-5=0或-x+13=0

∴x1=1,x2=13

(2) x^2+2x-3=0

[x-(-3)](x-1)=0

x-(-3)=0或x-1=0

∴x1=-3,x2=1

(3)x^2-2 x=-

x^2-2 x+ =0 (先化成一般形式)

△=(-2 )^2-4 ×=12-8=4>0

∴x=

∴x1=,x2=

(4)4x^2-4mx-10x+m^2+5m+6=0

4x^2-2(2m+5)x+(m+2)(m+3)=0

[2x-(m+2)][2x-(m+3)]=0

2x-(m+2)=0或2x-(m+3)=0

∴x1= ,x2=

例6.求方程3(x+1)^2+5(x+1)(x-4)+2(x-4)^2=0的二根. (选学)

分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我

们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方

法)

[3(x+1)+2(x-4)][(x+1)+(x-4)]=0

即 (5x-5)(2x-3)=0

∴5(x-1)(2x-3)=0

(x-1)(2x-3)=0

∴x-1=0或2x-3=0

∴x1=1,x2=是原方程的解.

例7.用配方法解关于x的一元二次方程x^2+px+q=0

x^2+px+q=0可变形为

x^2+px=-q (常数项移到方程右边)

x^2+px+( )2=-q+( )2 (方程两边都加上一次项系数一半的平方)

(x+)2= (配方)

当p^2-4q≥0时,≥0(必须对p^2-4q进行分类讨论)

∴x=- ±=

∴x1= ,x2=

当p^2-4q

例4: 【一元二次方程的解法的具体过程快些高师门】


思路提示:

一元二次方程的解法

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基 础.

一元二次方程的一般形式为:ax^2(2为次数,即X的平方)+bx+c=0,(a≠0),它是只含一个未知数,并且未知数的最高次数是2 的整式方程.

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:

1、直接开平方法;2、配方法;3、公式法;4、因式分解法.

二、方法、例题精讲:

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=±m .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解.

(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2

方程左边成为一个完全平方式:(x+ )2=

当b2-4ac≥0时,x+ =±

∴x=(这就是求根公式)

例2.用配方法解方程 3x2-4x-2=0

将常数项移到方程右边 3x2-4x=2

将二次项系数化为1:x2-x=

方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2

配方:(x-)2=

直接开平方得:x-=±

∴x=

∴原方程的解为x1=,x2= .

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) ,(b^2-4ac≥0)就可得到方程的根.

例3.用公式法解方程 2x2-8x=-5

将方程化为一般形式:2x2-8x+5=0

∴a=2,b=-8,c=5

b^2-4ac=(-8)2-4×2×5=64-40=24>0

∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)

∴原方程的解为x1=,x2= .

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.

例5: 详细解释一元二次方程的解法详细解释一元二次方程解法中的因式分解法.要有例子![数学练习题]


思路提示:

一元二次方程的解法有如下几种:

第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式

例1:X^2-4X+3=0

本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1.

例2:X^2-8X+16=0

本题运用因式分解法中的完全平方公式,原方程分解为(X-4)^2=0 可以得出X1=4 X2=4(注意:碰到此类问题,一定要写X1=X2=某个数,不能只写X=某个数,因为一元二次方程一定有两个根,两个根可以相同,也可以不同)

例3:X^2-9=0

本题运用因式分解法中的平方差公式,原方程分解为(X-3)(X+3)=0 ,可以得出X1=3,X2=-3.

例4:X^2-5X=0

本题运用因式分解法中的提取公因式法来解,原方程分解为X(X-5)=0 ,可以得出X1=0 ,X2=5

第二种方法是配方法,比较复杂,下面举一个例来说明怎样用配方法来解一元二次方程:

X^2+2X-3=0

第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2.

第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程.

还有一种方法就是开平方法,例如:X^2=121,那么X1=11,X2=-11.

最后如果用了上面所有的方法都无法解方程,那就只能像楼上所说的用求根公式了.

定理就是韦达定理,还有根的判别式,韦达定理就是一元二方程ax^2+bx+c=0(a不等于0)二根之和就是-b/a,两根之积就是c/a

举例:X^2-4X+3=0 两根之和就是-(-4/1)=4,两根之积就是3/1=3,(你可以自己解一下,看看是否正确).

因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让

两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个

根.这种解一元二次方程的方法叫做因式分解法.

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

(1)(x+3)(x-6)=-8 化简整理得

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解.

(2)2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解.

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.

(3)6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解.

(4)x2-2(+ )x+4 =0 (∵4 可分解为2 •2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解.

小结:

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般

形式,同时应使二次项系数化为正数.

直接开平方法是最基本的方法.

公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式

法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程

是否有解.

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方

法之一,一定要掌握好.(三种重要的数学方法:换元法,配方法,待定系数法).

例5.用适当的方法解下列方程.(选学)

(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0

(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0

分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算.观察后发现,方程左边可用平方差

公式分解因式,化成两个一次因式的乘积.

(2)可用十字相乘法将方程左边因式分解.

(3)化成一般形式后利用公式法解.

(4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解.

(1)4(x+2)2-9(x-3)2=0

[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0

(5x-5)(-x+13)=0

5x-5=0或-x+13=0

∴x1=1,x2=13

(2) x2+(2- )x+ -3=0

[x-(-3)](x-1)=0

x-(-3)=0或x-1=0

∴x1=-3,x2=1

(3)x2-2 x=-

x2-2 x+ =0 (先化成一般形式)

△=(-2 )2-4 ×=12-8=4>0

∴x=

∴x1=,x2=

(4)4x2-4mx-10x+m2+5m+6=0

4x2-2(2m+5)x+(m+2)(m+3)=0

[2x-(m+2)][2x-(m+3)]=0

2x-(m+2)=0或2x-(m+3)=0

∴x1= ,x2=

例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根. (选学)

分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我

们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方

法)

[3(x+1)+2(x-4)][(x+1)+(x-4)]=0

即 (5x-5)(2x-3)=0

∴5(x-1)(2x-3)=0

(x-1)(2x-3)=0

∴x-1=0或2x-3=0

∴x1=1,x2=是原方程的解.

例7.用配方法解关于x的一元二次方程x2+px+q=0

x2+px+q=0可变形为

x2+px=-q (常数项移到方程右边)

x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)

(x+)2= (配方)

当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)

∴x=- ±=

∴x1= ,x2=

当p2-4q

相关思考练习题:

题1:怎样解一元二次方程组

点拨:开平方法 公式法 配方法 一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基矗在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。根据定义可知,只含有一个未知数,且未知数的最高次...

题2:一元二次方程求根公式是什么?

点拨:一元二次方程求根公式: 当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a 当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a 只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax²+bx+c=0(a≠0) 一元二...

题3:一元二次方程的解法3种求详细步骤

点拨:一般解法 1.配方法 (可解全部一元二次方程) 如:解方程:x^2+2x-3=0 解:把常数项移项得:x^2+2x=3 等式两边同时加1(构成完全平方式)得:x^2+2x+1=4 因式分解得:(x+1)^2=4 解得:x1=-3,x2=1 用配方法解一元二次方程小口诀 二次系数化为一...

题4:怎么区分 解一元二次方程的三种方法

点拨:一元二次方程的一般解法有以下几种: 配方法(可解部分一元二次方程) 公式法(在初中阶段可解全部一元二次方程,前提:△≥0) 因式分解法(可解部分一元二次方程) 直接开平方法(可解全部一元二次方程) 直接开平方法 直接开平方法就是用直接开...

题5:一元二次方程的两个根是怎么解出来的?

点拨:你好! 一元二次方程的解法有很多种,只要它有解,一般都可以使用求根公式: 1、ax^2=bx+c=0的求根公式是 x=(-b±√b^2-4ac)/2a, 例如:x^2-2x-8=0,a=1,b=-2,c=-8 代入求根公式可得,x=(2±√4+32)/2=(2±6)/2 x1=4,x2=-2 2、假若前面的二次三项式...

转载请注明出处: http://www.vvvcd.com/view-85680-1.html