芝诺悖论
概括:这道题是平翱蹈同学的课后语文练习题,主要是关于芝诺悖论,指导老师为房老师。
题目:芝诺悖论
解:芝诺(埃利亚的) (Zeno of Elea)约公元前490年生于意大利半岛南部的埃利亚;约公元前425年卒.数学家、哲学家,是古希腊早期自然哲学著名人物.另外在希腊哲学中还有个芝诺,英文名是Zero,(336BC---264BC),斯多亚派的第一创始人,属于后苏格拉底时代的,出生于塞浦路斯岛,也是希腊著名的哲学家.大家别把这两个人搞混淆了!
芝诺(Zeno)生活在古代希腊的埃利亚城邦.他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友.关于他的生平,缺少可靠的文字记载.柏拉图在他的对话《巴门尼德》篇中,记叙了芝诺和巳门尼德于公元前5世纪中叶去雅典的一次访问.其中说:“巴门尼德年事已高,约65岁;头发很白,但仪表堂堂.那时芝诺约40岁,身材魁梧而美观,人家说他已变成巴门尼德所钟爱的了.”按照以后的希腊著作家们的意见,这次访问乃是柏拉图的虚构.然而柏拉图在书中记述的芝诺的观点,却被普遍认为是相当准确的.据信芝诺为巴门尼德的“存在论”辩护.但是不象他的老师那样企图从正面去证明存在是“一”不是 “多”,是“静”不是“动”,他常常用归谬法从反面去证明:“如果事物是多数的,将要比是‘一’的假设得出更可笑的结果.”他用同样的方法,巧妙地构想出一些关于运动的论点.他的这些议论,就是所谓“芝诺悖论”.芝诺有一本著作《论自然》.在柏拉图的《巴门尼德》篇中,当芝诺谈到自己的著作时说:“由于青年时的好胜著成此篇,著成后,人即将它窃去,以致我不能决断,是否应当让它问世.”公元5世纪的评论家普罗克洛斯(Proclus)在给这段话写的评注中说,芝诺从“多”和运动的假设出发,一共推出了40个各不相同的悖论.芝诺的著作久已失传,亚里士多德的《物理学》和辛普里西奥斯(Simplici- us)为《物理学》作的注释是了解芝诺悖论的主要依据,此外还有少量零星残篇可提供佐证.现存的芝诺悖论至少有 8个,其中关于运动的4个悖论尤为著名.
一则广为流传但情节说法不一的故事说,芝诺因蓄谋反对埃利亚(另一说为叙拉古)的僭主,而被拘捕、拷打,直至处死.
芝诺因其悖论而著名,并因此在数学和哲学两方面享有不朽的声誉.数学史家F.卡约里(Cajori)说,“芝诺悖论的历史,大体上也就是连续性、无限大和无限小这些概念的历史.”但遗憾的是,芝诺的著作没有能流传下来,我们是通过批评他的亚里士多德及其注释者辛普里西奥斯才得以了解芝诺悖论的要旨的.直到 19世纪中叶,人们对于亚里士多德关于芝诺悖论的引述及批评几乎是深信不疑的,普遍认为芝诺悖论只不过是一些有趣的谬见.英国数学家B.罗素 (Russell)感慨地说:“在这个变化无常的世界上,没有什么比死后的声誉更变化无常了.死后得不到应有的评价的最显眼的牺牲品莫过于埃利亚的芝诺了.他虽然发明了4个无限微妙、无限深邃的悖论,后世的大批哲学家们却宣称他只不过是一个聪明的骗子,而他的悖论只不过是一些诡辩.遭到两千多年的连续驳斥之后,这些“诡辩”才得以正名,….”19世纪下半叶以来,学者们开始重新研究芝诺.他们推测芝诺的理论在古代就没有得到完整的、正确的报道,而是被诡辩家们用作倡导怀疑主义和否定知识的工具,从而背离了芝诺的真正宗旨.而亚里士多德正是按照被诡辩家们歪曲过的形象来引述芝诺悖论的.然而,迄今为止,学者们还找不出可靠的证据足以推翻亚里士多德和辛普里西奥斯关于芝诺悖论的记述.由于目前对希腊哲学史了解得还不够,对于芝诺提出这些悖论的目的何在尚不清楚.比较一致的意见是:芝诺关于运动的悖论并不是简单地否认运动,芝诺责难“多”也不是简单地把两只羊说成一只羊.在这些悖论后面有着更深层的内涵.亚里士多德的着作保存了芝诺悖论的大意,功不可没,但是他对于芝诺悖论的分析和批评并非十分成功,是值得重新研究的.
举一反三
例1: 【"芝诺悖论"错在哪里?芝诺悖论:阿基里斯是古希腊神话里跑的最快的人,但如果他前面有一只乌龟(正从A点向前爬),他永远也追不上这只乌龟.理由如下:他要追上乌龟必须要经过乌龟出发的地方A,】[物理练习题]
思路提示:
时空是否可以无限分割芝诺悖论的关键是使用了两种不同的时间测度.原来,我们用来测量时间的任何一种“钟”都是依靠一种周期性的过程作标准的.如太阳每天的东升西落,月亮的圆缺变化,一年四季的推移,钟摆的运动等等.人们正是利用它们循环或重复的次数作为时间的测量标准的. 芝诺悖论中除了普通的钟以外,还有另一种很特别的“钟”,就是用阿基里斯每次到达上次乌龟到达的位置作为一个循环.
用这种重复性过程测得的时间称为“芝诺时”.例如,当阿基里斯在第n次到达乌龟在第n次的起始点时,芝诺时记为n,这样,在芝诺时为有限的时刻,阿基里斯总是落在乌龟后面.但是在我们的钟表上,假如阿基里斯跑完AB(即100米)用了1分钟,那么他跑完BC只要6秒钟,跑完CD只需 0.6秒,实际上,他只需要1 1/9分钟就可以追上乌龟了.
因此,芝诺悖论的产生原因,是在于“芝诺时”不可能度量阿基里斯追上乌龟后的现象.在芝诺时达到无限后,正常计时仍可以进行,只不过芝诺的“钟”已经无法度量它们了. 这个悖论实际上是反映时空并不是无限可分的,运动也不是连续的.
例2: 芝诺悖论是怎样解决的啊?[物理练习题]
思路提示:
当人类面对这深邃的宇宙开始思考一些问题的时候,他们就已经开始研究运动了,而运动的存在性问题是其中最为重要、也是最令人困惑的第一个问题.\x0d 表面上看来,运动的存在性是显然的,然而芝诺却最早以简单的论证“证明”了运动不可能存在,他也由于这一悖论式的证明而为后人所永远铭记.芝诺是古希腊时期爱利亚学派的主要成员,这个学派的基本思想是否认现实世界中的任何运动变化,认为它们只是真实存在的表面现象.芝诺为了证明他们的观点,第一个设想和论证了物体运动中存在的令人不安的困难.\x0d1.1 你追不上乌龟\x0d 芝诺的论证是这样的:你若想追上乌龟,你必须首先到达乌龟开始跑的位置,但当你到达乌龟开始跑的位置时,乌龟在这段时间里已经跑到前面去了,当你再想去追乌龟时,你面临同样的问题,即你仍必须首先要跑到乌龟此刻的位置,而等你跑到了乌龟又向前移动了.好,虽然你比乌龟跑得快,但你也只能按上述过程逐渐逼近乌龟,这样的过程将无限次地出现,而在每一阶段乌龟总在你前头.由于有限的你无法完成这无限个阶段,于是你永远也追不上乌龟.\x0d图1 你追不上乌龟\x0d “但是,我绝对可以追上乌龟!”你可能忍不住要争辩道.请别急,芝诺将进一步论证你根本就无法开始运动,更不用说追上乌龟了.你看,如果你想到达乌龟开始跑的位置,你就必须首先到达这段距离的中点,而你若想到达这个中点,你又必须首先到达这一半距离的中点,如此等等.由于这一二分过程可以无限地进行下去,而你无法完成无限个过程,于是你实际上都无法离开起点.\x0d “但是,……”,你也许已陷入了沉思之中.是的,尽管芝诺的论证简单易懂,但是要找出其论证中的问题却并不容易.实际上,自从芝诺悖论提出以来,人们一直试图指出其中的错误所在,然而直到今天,仍然没有一个完全满意的解答.\x0d [附] 芝诺悖论1\x0d 一般认为,芝诺悖论由四个论证组成,它们是二分法、阿基里斯、飞矢不动和运动场.\x0d 芝诺首先假定时间和空间是连续的2,即假定运动是连续的.为了证明这种连续运动是不可能的,芝诺考察了两种情况,它们是孤立物体的连续运动情况和两个物体的相对连续运动情况.\x0d图2 二分法 对于孤立物体的连续运动情况,他提出了一种“二分法”证明.芝诺认为,任何一个物体要想从A点运动到B点,必须首先到达AB的中点C,而要到达C点,他又必须首先到达AC的中点D,同样,要到达D点,他又必须首先到达AD的中点,等等.由于时间和空间是连续的,这一二分过程总可以无限地进行下去,于是该物体实际上都无法离开A点,因此孤立物体的连续运动是不可能的.\x0d图3 阿基里斯\x0d 对于两个物体的相对连续运动情况,芝诺提出了一个称为“阿基里斯”的证明.他说,阿基里斯若想追上乌龟,他必须首先到达乌龟开始跑的位置,但当他到达乌龟开始跑的位置时,乌龟在这段时间里已经跑到前面去了,当阿基里斯再想去追乌龟时,他面临同样的问题,即他仍必须首先要跑到乌龟此刻的位置,而等他跑到了乌龟又向前移动了.虽然阿基里斯比乌龟跑得快,但他也只能按上述过程逐渐逼近乌龟,这样的过程可以无限次地出现,在每一阶段乌龟总在他前头.由于阿基里斯无法完成这无限个阶段,于是他永远也追不上乌龟,从而两个物体的相对连续运动也是不可能的.\x0d 其次,芝诺假定时间和空间是分立的,即假定运动是间断的.为了证明这种间断运动也是不可能的,芝诺同样考察了两种情况,即孤立物体的间断运动情况和两个物体的相对间断运动情况.\x0d图4 飞矢不动\x0d 对于孤立物体的间断运动情况,他提出了“飞矢不动”论证3.芝诺说,由于运动是位置的变动,而飞矢在任何一个时间单元(或时刻)都呆在一个位置上,即在任何时间单元(或时刻)它的位置都没有变化,于是任何一个时间单元(或时刻)的飞矢是不动的,因此飞矢是不动的.\x0d图5 运动场 对于两个物体的相对间断运动情况,芝诺提出了“运动场”论证.他假设有A、B、C三列物体,物体B、C相对于A的运动方向相反,并且每一时间单元物体B、C相对于A都运动一个空间单元.于是,在一个时间单元过后物体B、C之间相对移动了两个空间单元,从而物体B相对于C移动一个空间单元需要半个时间单元,而物体B相对于A移动一个空间单元却需要一个时间单元,于是一个时间单元将等于半个时间单元.这一结论明显是不成立的,因此两个物体的相对间断运动也是不可能的.\x0d 是的,芝诺的结论显然是不对的,每个清醒的人都知道.然而,他的论证却并不一定就是错误的,为什么呢?因为他是在一定假设的前提下证明你追不上乌龟的,而这些假设不一定都正确.芝诺的假设包括:时间和空间是连续的,运动也是连续的.尽管这些假设看起来似乎是显然的,但是现代科学却已经暗示了它们很可能并不是正确的.因此,如果芝诺的论证没有问题,那么2000多年前的他就已经证明了时间、空间和运动不可能都是连续的.这是一个惊人的结论,它完全违背我们的常识,但芝诺成功了吗?让我们再来看一看他的具体论证.\x0d 可以看出,芝诺论证的关键在于他认为物体无法经过无穷多个点或区间而在连续时空中完成运动,但是他的根据呢?仔细检查后你会发现,没有!难道这是一条十分明显的、不需要进一步说明的公理吗?或许初看起来我们也会认为物体无法经过无穷多个点或区间,但喜欢刨根问底的人还是想问问芝诺这是为什么.当然,芝诺是无法回答了,那就让我们来分析一下这个看法是否正确吧.\x0d 首先,我们必须弄清“完成”的含义.所谓“完成”是指过程的发生只需要有限的时间,它本质上是以时间概念为基础的.于是,问题成为:物体是否能够在有限时间内经过空间中的无穷多个点或区间?根据时间和空间的连续性假设,有限的空间含有无穷多个点或区间,而有限的时间同样含有无穷多个时刻或时间区间,并且它们可以形成一个一一对应关系.因此,原则上物体可以利用有限时间内的无穷多个时刻或时间区间来通过有限空间中的无穷多个点或区间,从而物体便可以自然地在有限时间内经过空间中的无穷多个点或区间了.于是,物体是可以(在连续时空中)经过无穷多个点或区间而完成运动的.看来,芝诺所依据的似乎明显正确的看法其实是错误的,他在强调空间连续性的同时却忽略了时间的连续性.\x0d图6 意识无法追踪运动\x0d 然而,为什么我们总有一种感觉,认为物体无法经过无穷多个点或区间呢?这个问题很重要,因为芝诺也许正是利用了这种感觉才让人们为他的论证所迷惑.为此,让我们回忆一下我们通常是如何来理解无穷的完成过程的.你会注意到,我们在理解无穷的完成时,总是不知不觉地要从心理上去追踪它的完成,如追踪物体经过无穷多个点或区间.然而,由于我们追踪物体经过任何一个点或区间都需要有限的时间,从而我们便无法追踪物体经过无穷多个点或区间,因为我们的追踪将需要无穷长的时间!但是,这并不妨碍物体自己经过无穷多个点或区间,毕竟,我们没有理由认为无法通过意识追踪的过程实际上也无法完成.\x0d 找到了困惑的根源,你一定有一种如释负重的感觉吧,看来理解运动问题其实并不难.是的,有时你离答案仅一步之遥,而跨过去你的思想就会海阔天空,关键在于你是否愿意多花一点时间来思考了.理解总是令人愉悦的!而理解之前的困惑同样是一种妙不可言的经历,它会帮助你真正认识自己,并让你成为一个有理性的、智慧的人.\x0d 现在,你一定确信并理解自己可以追上乌龟了,衷心地祝贺你.\x0d1.3 运动的世界
例3: 关于芝诺的悖论就是阿基里斯让乌龟100米赛跑的那个,我讲给同学听,他们都说很无聊,说时间够阿基里斯肯定赢乌龟,这么悖论怎么解释?忘了说内容就是阿基里斯跑了一百米乌龟又跑了10米,[物理练习题]
思路提示:
阿基里斯要追上乌龟需要通过无穷的路程,但这个过程不需要无穷的时间.
芝诺的错误在于,把阿基里斯追赶乌龟的无穷的位置变化与无穷的时间变化混为一谈了.而这个无穷的位置变化并不需要无穷长的时间.
芝诺说:“阿基里斯永远追不上乌龟”中“永远”指的当然是“时间”,条件中却谈“位置”变化,这就是芝诺的悖论偷梁换柱之所在.
所以阿基里斯肯定赢乌龟.
例4: 量子力学是如何解决芝诺悖论的?希望能如霍金一样,把很深奥的量子力学原理,用很通俗的语言表述出来,让基本上不懂量子力学的人也能读得懂.但希望所给出的观点是权威性的.当然,也可以是
思路提示:
首先,我不赞同你的如下观点——“如霍金一样,把很深奥的量子力学原理,用很通俗的语言表述出来,让基本上不懂量子力学的人也能读得懂.”我可以负责任地跟你说,别说普通人弄不懂量子力学了,就是大科学家,也没有真懂量子力学的.至少有以下三位量子力学权威的话可以为证:1)推出量子力学的正统诠释的哥本哈根学派的领袖人物玻尔曾说:“如果谁没被量子力学搞得头晕,那他就一定是不理解量子力学.”2)千年才出一位的科学巨匠爱因斯坦说:“我思考量子力学的时间百倍于广义相对论,但依然不明白.”3)提出了量子力学的第三种表述(路径积分)的费曼说:“我们知道它如何计算,但不知道它为何要这样去计算,但只有这样去计算才能得出既有趣又有意义的结果.”
其次,我想提醒你注意芝诺在提出他的悖论时所默认的逻辑次序是与现代物理有所不同的:芝诺把时空概念置于逻辑起点,运动的概念是建立于时空概念之上的;但现代物理的逻辑却有了微妙的变化.比如相对论中将光速置于本源的位置,时间间隔是由光镜构成的自然钟定义的,空间间隔是由光钟与光速共同定义的.单从这一改变,就使得芝诺悖论不复存在了,因为在相对论看来,运动(尤其是光的恒定速度的真空运动)才是更根本的,整个逻辑次序被颠倒过来了!再比如量子力学中,虽未直接颠覆运动与时空的逻辑次序,但它至少将运动与时空置于同等地位!来看看量子力学的核心公式吧!ΔpΔx≥h/2π,ΔEΔt≥h/2π——h/2π是约化普朗克常数;Δ表示不确定度(测不准的程度);动量p与能量E都含有速度的成分,即都与运动密切相关;x是空间坐标,t是时间坐标.两个公式都是两个量的乘积与一个普适常数的关系,既然是乘积,并且是满足交换律的乘积,这就表明,空间与动量所含的运动处于同等的地位,时间与能量中所含的运动处于同等的地位!亦即,运动与时空在这个量子力学核心公式里没有谁决定谁的问题,而是相互制约的关系——如果考察的时间极短,则相应的能量中所含的运动范围就会极大;如果考察的空间极小,则相应的动量中所含的运动的范围就会极大.你所说的“物体在某个很短的时间间隔内静止”直接就与“ΔEΔt≥h/2π——如果考察的时间极短,则相应的能量中所含的运动范围就会极大(所谓‘运动范围极大’是说物体的运动速度是在某个很大的数值到零之间不确定地迅速变化着)”矛盾!因此,你如果承认量子力学是对的,那你推理的逻辑起点就给它否定掉了,后面的一系列结论自然也都被一并否定了.
再次,说说最小时间段和最小空间段——普朗克时间与普朗克空间的问题:最小时空元的概念不是量子力学的直接结论,而是量子力学与广义相对论结合所导致的一个重要推测.之所以普朗克时空最小,不是因为你说的“假设一个空间段是绝对不可分的”那样是由于不可分才最小,而是因为到了那个时空尺度,时空极度扭曲,其拓扑结构千变万化且瞬息万变,使得时间的先后、空间的前后等一类基本的时空概念都失去了意义(更别说时空的度量了),亦即,再小就是混沌一片根本无法使用时空概念了!简言之是因为到了失去时空本来意义的临界点,所以普朗克时空才最小.
最后,我想强调一下量子运动与我们日常熟知的运动(也正是芝诺所描述的那种运动)是大相径庭的:量子运动神秘莫测,粒子的速度与位置似乎都是可以大范围地突变(在此意义上有超光速的问题),粒子时而在此、时而又突然出现在很远的某处;时而慢如蜗牛、时而又快似闪电……量子运动恰如一大团迷雾,因此,像爱因斯坦那样的众多顶级的科学家都会被量子力学困扰一生!也因此,芝诺悖论在量子力学的框架内是没有多少意义的,因为量子运动迥然不同于经典运动.下面引述的内容是我以前答题时的描述,如果你还想对量子运动是何等的奇异有更多一些的了解,不妨看看.
……
尽管日常语言无法精确地描述奇异的微观世界,但我们所熟悉的语言还只有日常语言;微观世界我们从未真正的体验过,所以我们没有微观语言.目前最好的语言就是数学公式的推演了,而一切描述性的关于微观图像的说法都是似是而非的.但是既然我们不能很专业地只讨论数学,那我们还是要使用一些形象化的日常语言尽力对微观世界进行一些一鳞半爪式的描述.以下的描绘肯定不是精确的,但有一定的启发性.
我通常是这样来想象一个自由的、且近期尚未与别的粒子相互作用过的微观粒子——它是一团云雾和一个点粒子的统一体,这团云雾的尺度大约就是该粒子的德布罗意波长的大小,点粒子在这团云雾的范围内(严格来说,它应遍布全空间,但超出这个云雾范围的几率很小,暂时忽略不计)忽而出现在这里、忽而又在那里冒出(某一片刻,粒子在此处向真空交出了它的全部能量从而“融化”到真空里;下一个片刻,另一处的真空又突然给出一些能量“重塑”了这个粒子),这种极快速的、随机的在不同位置的“生生灭灭、进进出出”正表现出一团云雾的样子.
接下来看我特别选定的三种电子:1)热电子——其动能等于室温下电子的平均动能,其德布罗意波长约为6纳米(10^-9m);2)低能电子——其动能等于130几伏特的电场中获得的能量,其德布罗意波长约为1埃(10^-10m),这差不多正是一个氢原子的尺度;3)高能电子——其动能等于一万五千亿伏特(10^12V)的电场中获得的能量,其德布罗意波长约为1费米(10^-15m),这差不多正是一个质子或中子的尺度.
再看这三种电子在原子以及原子核面前的表现:1)热电子这团云雾在尺度上比氢原子大近百倍,而横截面积则大上千倍,它俩相遇有点儿像飞机穿过一大块积雨云,彼此几乎都没啥变化.当然还是有一点两者产生相互作用的几率(这种作用的细节与下述第二种情况类似).2)低能电子这团云雾的尺度与氢原子相当,它将产生不少与相互作用有关的后果,只有一点几率是绕过原子就像第一情况那样.学习过量子力学基础内容的人都会记得一维条件下的入射平面波经过有限高有限宽的势垒(或有限深有限宽的势井)后部分反射部分透射(或陷入井中被约束)的情景,现在原子中的绕核电子对外来低能电子来说就有点像势垒,而其中的原子核就象势井,虽是三维情况,但大体仍是反射、透射及约束这三种情况.碰到原子后的电子云雾变得复杂:它开始随时间而不断扩展,一部分向入射的反方向扩展,这对应着反射波,也就是对应着反弹回去的几率;还有一部分“隧穿”过原子,即透射波;还有一小部分变成围绕核的电子云,对应着形成负离子的几率;还有很小很小的一部分深入核中(详见下述).3)高能电子的那团云雾相当集中,对原子绕过、反射、透射等的几率都很小,它就像一根针,轻易即可刺破原子这个“大气球”而深入核中甚至质子或中子之中.电子与核子的相互作用基本上仍是电磁的,不必考虑强相互作用,因为电子根本就不带色荷.质子带正电,对电子就相当于势井.中子虽不带电,但它有磁矩,可相当于微弱的势井或势垒.夸克有带电,也相当于势井或势垒.它们对电子都会出产生反射透射等的影响.这么高能的电子还可通过弱作用(弱电统一的能标已基本达到)创造一系列正反夸克对(它们形成新粒子)导致更复杂的局面(我也不清楚,就不能继续说了)……
例5: 【芝诺悖论一组四个?是那四个?】[物理练习题]
思路提示:
关于芝诺提出悖论一共是四个.
“两分法”:向着一个目的地运动的物体,首先必须经过路程的中点;然而要经过这点,又必须先经过路程的四分之一点;要过四分之一点又必须首先通过八分之一点等等,如此类推,以至无穷.结论是:无穷是不可穷尽的过程,运动永远不可能开始的.
“阿基里斯追不上乌龟”: 阿基里斯是《荷马史诗》中的善跑英雄.奔跑中的阿基里斯永远也无法超过在他前面慢慢爬行的乌龟.因为他必须首先到达乌龟的出发点,而当他到达那一点时,乌龟又向前爬了.因而乌龟必定总是跑在前头.这个论点同两分法悖论一样,所不同的是不必把所需通过的路程一再平分.
“飞矢不动”:飞着的箭在任何瞬间都是既非静止又非运动的.如果瞬间是不可分的,箭就不可能运动,因为如果它动了,瞬间就立即是可以分的了.但是时间是由瞬间组成的,如果箭在任何瞬间都是不动的,则箭总是保持静止.所以飞出的箭不能处于运动状态.
“操场或游行队伍”:A、B两件物体以等速向相反方向运动.从静止的C看来,比如说,A、B都在1小时内移动了2公里;可是,从A看来,则B在1小时内就移动了4公里.由于B保持等速移动,所以移动2公里的时间应该是移动4公里时间的一半.因而一半的时间等于两倍的时间.
相关思考练习题:
题1:芝诺悖论产生的根源是什么?它揭示了什么道理?
点拨:芝诺悖论(Zeno's paradox)是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。 芝诺:“一个人从A点走到B点,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2……”如此循环下去,永远不能到终点。 假设此...
题2:芝诺悖论是怎样解决的啊?
点拨:当人类面对这深邃的宇宙开始思考一些问题的时候,他们就已经开始研究运动了,而运动的存在性问题是其中最为重要、也是最令人困惑的第一个问题。表面上看来,运动的存在性是显然的,然而芝诺却最早以简单的论证“证明”了运动不可能存在,他也由于...
题3:如何看待芝诺的四个悖论?
点拨:一、不可否认的是,芝诺四大悖论无疑是错误的,其通病在于采取孤立、静止和片面的形而上学观点看问题,因而是错误的。 二、芝诺悖论介绍 1.二分法:穿过一定距离的全部之前,你必须穿过这个距离的一半,传个这个距离的一半之前,你必须穿过一半的...
题4:量子力学是如何解决芝诺悖论的
点拨:量子力学是如何解决芝诺悖论的 首先,我不赞同你的如下观点——“如霍金一样,把很深奥的量子力学原理,用很通俗的语言表述出来,让基本上不懂量子力学的人也能读得懂。”我可以负责任地跟你说,别说普通人弄不懂量子力学了,就是大科学家,也没有真...
题5:芝诺悖论有哪几个?
点拨:芝诺悖论有四:二分法,阿基里和乌龟赛跑,飞矢不动,一倍的时间等于一半的时间。
- 【大卫贝克汉姆】-www.davidbeckham.com(2021-03-02)
- 【英国克莱菲尔德大学】-www.cranfield.ac.uk(2021-03-02)
- 【帝国烟草公司】-www.imperial-tobacco.com(2021-03-02)
- 【免费佛教音频】-www.freebuddhistaudio.com(2021-03-02)
- 【英国第一集团】-www.firstgroup.com(2021-03-02)